在高压或低压输入下开机(包含轻载,重载,容性负载),输出短路,动态负载,高温等情况下,通过变压器(和开关管)的电流呈非线性增长,当出现此现象时,电流的峰值无法预知及控制,可能导致电流过应力和因此而产生的开关管过压而损坏。
变压器饱和时的电流波形
容易产生饱和的情况:
1)变压器感量太大;
2)圈数太少;
3)变压器的饱和电流点比 IC 的 限流点小;
4)没有软启动。
解决办法:
1)降低 IC 的限流点;
2)加强软启动,使通过变压器的电流包络更缓慢上升。
Vds 过高
Vds 的应力要求:
恶劣条件( 输入电压,负载 ,环境温度 ,电源启动或短路测试)下,Vds 的 值不应超过额定规格的 90%
Vds 降低的办法:
1)减小平台电压:减小变压器原副边圈数比;
2)减小尖峰电压:
a. 减小漏感:
变压器漏感在开关管开通是存储能量是产生这个尖峰电压的主要原因,减小漏感可以减小尖峰电压。
b. 调整吸收电路:
①使用 TVS 管;
②使用较慢速的二极管,其本身可以吸收一定的能量(尖峰);
③插入阻尼电阻可以使得波形更加平滑,利于减小 EMI。
IC 温度过高
原因及解决办法:
1)内部的 MOSFET 损耗太大:
开关损耗太大,变压器的寄生电容太大,造成 MOSFET 的开通、关断电流与 Vds 的交叉面积大。解决办法:增加变压器绕组的距离,以减小层间电容,如同绕组分多层绕制时,层间加入一层绝缘胶带(层间绝缘) 。
2)散热不良:
IC 的很大一部分热量依靠引脚导到 PCB 及其上的铜箔,应尽量增加铜箔的面积并上更多的焊锡
3)IC 周围空气温度太高:
IC 应处于空气流动畅顺的地方,应远离零件温度太高的零件。
空载、轻载不能启动
现象:
空载、轻载不能启动,Vcc 反复从启动电压和关断电压来回跳动。
原因:
空载、轻载时,Vcc 绕组的感应电压太低,而进入反复重启动状态。
解决办法:
增加 Vcc 绕组圈数,减小 Vcc 限流电阻,适当加上假负载。如果增加 Vcc 绕组圈数,减小 Vcc 限流电阻后,重载时 Vcc 变得太高,请参照稳定 Vcc 的办法。
启动后不能加重载
原因及解决办法:
1)Vcc 在重载时过高
重载时,Vcc 绕组感应电压较高,使 Vcc 过高并达到 IC 的 OVP 点时,将触发 IC 的过压保护,引起无输出。如果电压进一步升高,超过 IC 的承受能力,IC 将会损坏。
2)内部限流被触发
a. 限流点太低
重载、容性负载时,如果限流点太低,流过 MOSFET 的电流被限制而不足,使得输出不足。解决办法是增大限流脚电阻,提高限流点。
b. 电流上升斜率太大
上升斜率太大,电流的峰值会更大,容易触发内部限流保护。解决办法是在不使变压器饱和的前提下提高感量。
待机输入功率大
现象:
Vcc 在空载、轻载时不足。这种情况会造成空载、轻载时输入功率过高,输出纹波过大。
原因:
输入功率过高的原因是,Vcc 不足时,IC 进入反复启动状态,频繁的需要高压给 Vcc 电容充电,造成起动电路损耗。如果启动脚与高压间串有电阻,此时电阻上功耗将较大,所以启动电阻的功率等级要足够。
电源 IC 未进入 Burst Mode 或已经进入 Burst Mode,但 Burst 频率太高,开关次数太多,开关损耗过大。
解决办法:
调节反馈参数,使得反馈速度降低。
短路功率过大
现象:
输出短路时,输入功率太大,Vds 过高。
原因:
输出短路时,重复脉冲多,同时开关管电流峰值很大,造成输入功率太大过大的开关管电流在漏感上存储过大的能量,开关管关断时引起 Vds 高。
输出短路时有两种可能引起开关管停止工作:
1)触发 OCP 这种方式可以使开关动作立即停止
a. 触发反馈脚的 OCP;
b. 开关动作停止;
c.Vcc 下降到 IC 关闭电压;
d.Vcc 重新上升到 IC 启动电压,而重新启动。
2)触发内部限流
这种方式发生时,限制可占空比,依靠 Vcc 下降到 UVLO 下限而停止开关动作,而 Vcc 下降的时间较长,即开关动作维持较长时间,输入功率将较大。
a. 触发内部限流,占空比受限;
b.Vcc 下降到 IC 关闭电压;
c. 开关动作停止;
d.Vcc 重新上升到 IC 启动电压,而重新启动。
解决办法:
1)减少电流脉冲数,使输出短路时触发反馈脚的 OCP,可以使开关动作迅速停止工作,电流脉冲数将变少。这意味着短路发生时,反馈脚的电压应该更快的上升。所以反馈脚的电容不可太大;
2)减小峰值电流。
空载,轻载输出纹波过大
现象:
Vcc 在空载或轻载时不足。
原因:
Vcc 不足时,在启动电压(如 12V)和关断电压(如 8V)之间振荡 IC 在周期较长的间歇工作,短时间提供能量到输出,接着停止工作较长的时间,使得电容存储的能量不足以维持输出稳定,输出电压将会下降。
解决方法:
保证任何负载条件下,Vcc 能够稳定供给。
现象:
Burst Mode 时,间歇工作的频率太低,此频率太低,输出电容的能量不能维持稳定。
解决办法:
在满足待机功耗要求的条件下稍微提高间歇工作的频率,增大输出电容。
重载、容性负载不能启动
现象:
轻载能够启动,启动后也能够加重载,但是重载或大容性负载情况下不能启动。
一般设计要求:
无论重载还是容性负载(如 10000uF),输入电压 还是 ,20mS 内,输出电压必须上升到稳定值。
原因及解决办法(保证 Vcc 在正常工作范围内的前提下):
下面以容性负载 C=10000uF 为例进行分析,
按规格要求,必须有足够的能量使输出在 20mS 内上升到稳定的输出电压(如 5V)。
E=0.5*C*V^2
电容 C 越大,需要在 20mS 内从输入传输到输出的能量更大。
以芯片 FSQ0170RNA 为例如图所示,阴影部分总面积 S 就是所需的能量。要增加面积 S,办法是:
1)增大峰值电流限流点 I_limit,可允许流过更大电感电流 Id:将与 Pin4 相接的电阻增大,从内部电流源 Ifb 分流更小,使作为电流限制参考电压的 PWM 比较器正输入端的电压将上升,即允许更大的电流通过 MOSFET/ 变压器,可以提供更大的能量。
2)启动时,增加传递能量的时间,即延长 Vfb 的上升时间(到达 OCP 保护点前)。
对这款 FSQ0170RNA 芯片,电感电流控制是以 Vfb 为参考电压的,Vfb 电压的波形与电感电流的包络成正比。控制 Vfb 的上升时间即可控制电感包络的上升时间,即增加传递能量的时间。
IC 的 OCP 功能是检测 Vfb 达到 Vsd(如 6V)实现的。所以要降低 Vfb 斜率,就可以延长 Vfb 的上升时间。
懂的朋友说说来一波开关电源调试过程中的问题合集-开远市电工培训学校